翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fuel Stratified Injection : ウィキペディア英語版
Gasoline direct injection
In non-Diesel internal combustion engines, Gasoline Direct Injection (GDI), also known as Petrol Direct Injection, Direct Petrol Injection, Spark Ignited Direct Injection (SIDI) and Fuel Stratified Injection (FSI), is a variant of fuel injection employed in modern two-stroke and four-stroke gasoline engines. The gasoline is highly pressurized, and injected via a common rail fuel line directly into the combustion chamber of each cylinder, as opposed to conventional multi-point fuel injection that injects fuel into the intake tract, or cylinder port. Directly injecting fuel into the combustion chamber requires high pressure injection whereas low pressure is used injecting into the intake tract or cylinder port.
In some applications, gasoline direct injection enables a stratified fuel charge (ultra lean burn) combustion for improved fuel efficiency, and reduced emission levels at low load.
==Theory of operation==
The major advantages of a GDI engine are increased fuel efficiency and high power output. Emissions levels can also be more accurately controlled with the GDI system. The cited gains are achieved by the precise control over the amount of fuel and injection timings that are varied according to engine load. In addition some engines operate on full air intake. That is, there is no air throttle plate eliminating air throttling losses in some GDI engines, when compared to a conventional fuel-injected or carbureted engine, which greatly improves efficiency, and reduces piston 'pumping losses'. Engine speed is controlled by the engine control unit/engine management system (EMS), which regulates fuel injection function and ignition timing, instead of having a throttle plate that restricts the incoming air supply. Adding this function to the EMS requires considerable enhancement of its processing and memory, as direct injection plus the engine speed management must have very precise algorithms for good performance and drivability.
The engine management system continually chooses among three combustion modes: ultra lean burn, stoichiometric, and full power output. Each mode is characterized by the air-fuel ratio. The stoichiometric air-fuel ratio for gasoline is 14.7:1 by weight (mass), but ultra lean mode can involve ratios as high as 65:1 (or even higher in some engines, for very limited periods). These mixtures are much leaner than in a conventional engine and reduce fuel consumption considerably.
* Ultra lean burn or stratified charge mode is used for light-load running conditions, at constant or reducing road speeds, where no acceleration is required. The fuel is not injected at the intake stroke but rather at the latter stages of the compression stroke. The combustion takes place in a cavity on the piston's surface which has a toroidal or an ovoidal shape, and is placed either in the center (for central injector), or displaced to one side of the piston that is closer to the injector. The cavity creates the swirl effect so that the small amount of air-fuel mixture is optimally placed near the spark plug. This stratified charge is surrounded mostly by air and residual gases, which keeps the fuel and the flame away from the cylinder walls. Decreased combustion temperature allows for lowest emissions and heat losses and increases air quantity by reducing dilation, which delivers additional power. This technique enables the use of ultra-lean mixtures that would be impossible with carburetors or conventional fuel injection.
* Stoichiometric mode is used for moderate load conditions. Fuel is injected during the intake stroke, creating a homogeneous fuel-air mixture in the cylinder. From the stoichiometric ratio, an optimum burn results in a clean exhaust emission, further cleaned by the catalytic converter.
* Full power mode is used for rapid acceleration and heavy loads (as when climbing a hill). The air-fuel mixture is homogeneous and the ratio is slightly richer than stoichiometric, which helps prevent detonation (pinging). The fuel is injected during the intake stroke.
It is also possible to inject fuel more than once during a single cycle. After the first fuel charge has been ignited, it is possible to add fuel as the piston descends. The benefits are more power and economy, However, certain octane fuels have caused exhaust valve erosion.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gasoline direct injection」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.